Incremental Low-High Orders of Directed Graphs and Applications
نویسندگان
چکیده
A flow graph G = (V,E, s) is a directed graph with a distinguished start vertex s. The dominator tree D of G is a tree rooted at s, such that a vertex v is an ancestor of a vertex w if and only if all paths from s to w include v. The dominator tree is a central tool in program optimization and code generation, and has many applications in other diverse areas including constraint programming, circuit testing, biology, and in algorithms for graph connectivity problems. A low-high order of G is a preorder δ of D that certifies the correctness of D, and has further applications in connectivity and path-determination problems. In this paper we consider how to maintain efficiently a low-high order of a flow graph incrementally under edge insertions. We present algorithms that run in O(mn) total time for a sequence of edge insertions in a flow graph with n vertices, where m is the total number of edges after all insertions. These immediately provide the first incremental certifying algorithms for maintaining the dominator tree in O(mn) total time, and also imply incremental algorithms for other problems. Hence, we provide a substantial improvement over the O(m2) straightforward algorithms, which recompute the solution from scratch after each edge insertion. Furthermore, we provide efficient implementations of our algorithms and conduct an extensive experimental study on real-world graphs taken from a variety of application areas. The experimental results show that our algorithms perform very well in practice. 1998 ACM Subject Classification E.1 [Data Structures] Graphs and Networks, Lists, Stacks, and Queues, Trees, G.2.2 [Graph Theory] Graph Algorithms
منابع مشابه
On Low-High Orders of Directed Graphs: Incremental Algorithms and Applications
A flow graph G = (V,E, s) is a directed graph with a distinguished start vertex s. The dominator tree D of G is a tree rooted at s, such that a vertex v is an ancestor of a vertex w if and only if all paths from s to w include v. The dominator tree is a central tool in program optimization and code generation, and has many applications in other diverse areas including constraint programming, ci...
متن کاملCubic symmetric graphs of orders $36p$ and $36p^{2}$
A graph is textit{symmetric}, if its automorphism group is transitive on the set of its arcs. In this paper, we classifyall the connected cubic symmetric graphs of order $36p$ and $36p^{2}$, for each prime $p$, of which the proof depends on the classification of finite simple groups.
متن کاملDirected prime graph of non-commutative ring
Prime graph of a ring R is a graph whose vertex set is the whole set R any any two elements $x$ and $y$ of $R$ are adjacent in the graph if and only if $xRy = 0$ or $yRx = 0$. Prime graph of a ring is denoted by $PG(R)$. Directed prime graphs for non-commutative rings and connectivity in the graph are studied in the present paper. The diameter and girth of this graph are also studied in the pa...
متن کاملDistributed and Cooperative Compressive Sensing Recovery Algorithm for Wireless Sensor Networks with Bi-directional Incremental Topology
Recently, the problem of compressive sensing (CS) has attracted lots of attention in the area of signal processing. So, much of the research in this field is being carried out in this issue. One of the applications where CS could be used is wireless sensor networks (WSNs). The structure of WSNs consists of many low power wireless sensors. This requires that any improved algorithm for this appli...
متن کاملOn independent domination numbers of grid and toroidal grid directed graphs
A subset $S$ of vertex set $V(D)$ is an {em indpendent dominating set} of $D$ if $S$ is both an independent and a dominating set of $D$. The {em indpendent domination number}, $i(D)$ is the cardinality of the smallest independent dominating set of $D$. In this paper we calculate the independent domination number of the { em cartesian product} of two {em directed paths} $P_m$ and $P_n$ for arbi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017